Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling

By Angenent, Largus T. and Gebremedhin, Kifle G. and Perano, Kristen M. and Usack, Joseph G., Journal of Dairy Science, 2015
Description
The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4 ± 3.7 kg/d of milk at 166 ± 28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700 h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7 ± 0.9 and 79.0 ± 1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0 ± 1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5°C cooling water was 0.3°C lower than the rectal temperature with 10°C cooling water, but the other measurements (respiration rate, milk production, and DMI) did not show a statistically significant difference between the cooling water temperatures. Placing waterbeds on concrete stalls without additional cooling did not have a measurable effect in alleviating the heat stress of the cows.
We welcome and encourage discussion of our linked research papers. Registered users can post their comments here. New users' comments are moderated, so please allow a while for them to be published.

Leave a Reply