Effect of heat stress during late gestation on immune function and growth performance of calves: Isolation of altered colostral and calf factors

By Dahl, G. E. and Monteiro, A. P. A. and Tao, S. and Thompson, I. M., Journal of Dairy Science, 2014
Description
Calves born to cows exposed to heat stress during the dry period and fed their dams’ colostrum have compromised passive and cell-mediated immunity compared with calves born to cows cooled during heat stress. However, it is unknown if this compromised immune response is caused by calf or colostrum intrinsic factors. Two studies were designed to elucidate the effects of colostrum from those innate to the calf. The objective of the first study was to evaluate the effect of maternal heat stress during the dry period on calf-specific factors related to immune response and growth performance. Cows were dried off 46 d before expected calving and randomly assigned to 1 of 2 treatments: heat stress (HT; n = 18) or cooling (CL; n = 18). Cows of the CL group were housed with sprinklers, fans and shade, whereas cows of HT group had only shade. After calving, the cows were milked and their colostrum was frozen for the subsequent study. Colostrum from cows exposed to a thermoneutral environment during the dry period was pooled and stored frozen (−20°C). Within 4 h of birth, 3.8 L of the pooled colostrum from thermoneutral cows was fed to calves born to both HT and CL cows. Day of birth was considered study d 0. All calves were exposed to the same management and weaned at d 49. Blood samples were collected before colostrum feeding, 24 h after birth and twice weekly up to d 28. Total serum IgG concentrations were determined. Body weight was recorded at birth and at d 15, 30, 45, and 60. Relative to CL calves, HT calves were lighter at birth (38.3 vs. 43.1 kg), but no difference in weight gain was observed at d 60. Additionally, HT calves had lower apparent efficiency of IgG absorption (26.0 vs. 30.2%), but no differences were observed for total IgG concentration. The objective of the second study was to evaluate the isolated effect of the colostrum from HT cows on calf immune response and growth performance. The experimental design was identical to the first study, but all calves were born to cows under thermoneutral conditions during the dry period. At birth, calves were blocked by sex and birth weight and then randomly assigned to 1 of 2 treatments, which meant they received pooled colostrum from HT cows or CL cows. No treatment effect was observed on passive immune transfer or on postnatal growth. Thus, heat stress during the last 6 wk of gestation negatively affects the ability of the calf to acquire passive immunity, regardless of colostrum source.
We welcome and encourage discussion of our linked research papers. Registered users can post their comments here. New users' comments are moderated, so please allow a while for them to be published.

Leave a Reply